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Abstract—We prove that the introns play the role of a decoy (i.e., exons) and the redundant symbols (i.e., introns) needed
in absorbing mutations in the same way hollow uninhabited py the error-correction process. It is well known that DNA
structures are used by the military to protect important repjication and protein synthesis involve error repair mecha-
installations. Our approach is based on a probability of error . -
analysis, where errors are mutations which occur in the exon nlsm_s [4]. Howgver, no "”ka‘_éle has been found_ between these
sequences. We derive the optimal exon length distribution, repair mechanisms and the intron sequences in the genes. An
which minimizes the probability of error in the genome. algebraic interpretation of the role of introns appeared in [5].
Furthermore, to understand how can Nature generate the Using pure mathematics and specifically a branch of number
optimal distribution, we propose a diffusive random walk model a4y called sequence algebra, Huen showed that the role of
for exon generation throughout evolution. This model results in . . . .
an alpha stable exon length distribution, which is asymptotically Introns is t(_) Stabll!ze an ever.changlr?g genome. Mqreover,
equivalent to the optimal distribution. Experimental results the corrective action of the introns is never sufficient to
show that both distributions accurately fit the real data. Given  bring the genome to the full equilibrium state, which spells
that introns also drive biological evolution by increasing the stagnation and ultimately extinction.
rate of unequal crossover between genes, we conclude that the  \ye propose that introns control the balance between
role of introns is to maintain a genius balance between stability . S . .
and adaptability in eukaryotic genomes. stability and adaptability in <_a_ukary0t|c genomes. In this

paper, we focus on the stability role of introns. The role
I. INTRODUCTION of introns in driving evolution by increasing the rate of re-

The unexpected discovery of the intron-exon structureombination of exons is inspired by Gilbert’'s exon shuffling
of eukaryotic genomes in 1977 struck the molecular biolhypothesis. However, unlike Gilbert, we do not necessarily
ogy community. The genes of eukaryotic genomes contatiaim that exons represent functionally and/or structurally
protein-coding sequences, calledons separated by non- important subunits of proteins nor do we adopt his intron-
coding sequences, calléatrons. Thus, introns are excluded early view. All we claim is that the long sequences of
from the main gene function: making proteins. What isntrons make them hot spots for genetic recombination via
more intriguing is that introns make up a large portion ofinequal crossover. The role of introns in increasing the rate
eukaryotic DNA. In humans, for example, approximatelyof unequal crossovers must be tempered in order to prevent
30% of the human genome is made up of introns. Questioexcessive evolutionary adaptability. Rapid changes in the
and speculations about the evolutionary origins and fungenomic code must not occur too frequently, or else we
tion of introns appeared immediately after their discoverywould experience evolutionary jumps in each generation.
Finding the role of introns is critical in understanding theBased on probability of error analysis and optimization, we
function and evolution of genomes. More than 25 yearshow that introns play the role of a decoy in absorbing
later, the subject is still an active area of research. Thmany mutations modelled as the transmission errors of the
extra energy needed to maintain and process the introdsplogical communication channel presented in [6]. Introns
throughout evolution, seems to defy evolutionary logic; “Therotect coding regions in the DNA sequence from frequent
cell puts a huge amount of its energy into the creation dgdrrors in the same way hollow uninhabited structures are
these introns, then discards them ... Nature would not go tsed by the military to protect important installations, such
all that trouble without a reason” [1]. as aircraft hangars and missile launching facilities, from a

On year after their discovery, Gilbert [2] advanced thabomb attack by serving as a dummy target that resembles
recombination in intronic regions of genes increases the ratiee protected structure. The stability role attributed to introns
of creation of new genes by forming novel combinations o&ccounts for at least two biological facts: (i) The absence of
exons. Such shuffling must have speeded up evolution ligtrons in prokaryotic genomes translates, according to our
accelerating the diversity of proteins and so of living thingsview, to a high mutability rate of these primitive organisms.
However, the exon shuffling hypothesis does not explailt is widely known today that many bacteria and viruses
the lack of introns in prokaryotic genomes. Informatiorrely on mutations for diversification. (ii) The decoy role
theory and coding techniques, which are well known tdor introns predicts that coding sequences should be more
communication engineers, offer an alternative explanatioconserved among organisms than non-coding sequences.
to the nature of introns: Battail [3] hypothesized that errorStudies in comparative genomics showed that functional
correcting codes are used in the replication process of tlENA sequences tend to undergo mutation at a slower rate
genome. A consequence of this hypothesis is the existenit&an nonfunctional sequences [7]. For example, the coding
of redundant DNA. The genes in the DNA are viewed asequence of a human protein-coding gene is typically about
the encoded messages composed of the information symb8&% identical to its mouse ortholog, while their genomes as



a whole are much more widely divergent. Nevertheless, orvee assume that the mutations are Poisson distributed in the
can legitimately ask: Why wouldnt Nature invest in more ergenome.

ror correction mechanisms rather than carrying this enormo
decoy luggage? We argue that several reasons lie behind thi
choice: First, if nature had to design error correction codes to Assume that there ar&” exons of total length/ in a
control the exact rate of mutation required to simultaneous§ene of 7' nucleotides. Letl; be the length of exork.
maintain life and encourage evolution, it would need to knon this subsection, we answer the question: “What are the
the exact distribution and form of all possible mutationg®Ptimal exon lengths, k = 1,---, K, which minimize
which occurred in the past and will occur in the futurethe probability of error in the gene?".

Designing complex error correcting codes for a given noise Proposition 2: Assume that the mutations are Poisson
model might be completely useless in the face of dynami@istributed with rateX. Consider a genome of length
noise characteristics. Second, a reduction in the error ratgcleotides includings” exons having total length/. Let ;.
comes at the price of an increase in complexity. Nature migl¢ the length of thé:"™ exon. Then, the probability of error
have preferred to spend more energy in carrying the decdy given by

S Error robustness analysis

sequences rather than investing in complex and costly error K T—l AT — 1)
repair mechanisms. Po=1-eTT] Y 7"“ 1)
This paper is organized as follows: In Section Il, we k=1 n=0 w )
< M for all Kk = 1,---,K, we obtain an

presume a deterministic analysis of the optimal exon lengths!Nce U = _
which minimize the probability of error in the genome. ThisuPPer bound on the probability of error by truncating the
analysis will motivate the need to consider a stochastic modgfmmation in Eq. (1) t&"— M instead ofl’ —{;.. Minimizing

for the exon length distribution. In Section 111, we readdres&'e maximum probability of error°", is more tractable
the probability of error optimization problem assuming nalytically than minimizing the probability of error in Eg.
stochastic distribution of the exon lengths. First, we derivéL); Using the Lagrange multiplier technique, with constraint
the optimal exon length distribution, which minimizes the-k=1{s = M, and taking the derivative of%"** with
probability of error. Second, we address the question §FSPeCt tols, we obtain the following coupled system for
a plausible physical realization of the optimal exon lengtt€ optimal exon lengths:

distribution. Experimental results on real data are discussed Mo, wru x"(:r_lk)"][zf;f” x"(T_zio)"*l]

in Section IV. Finally, Section V summarizes the main resultg, — ps k#io 3 n! (n=1)!

n=0

i i K A(T=L)m DI M an(T=1)n—14"
of this paper and discusses future work. My yor-m ( - B)" ) Lnm) (n—(l)! )"
Il. GENOMIC STRUCTURE DETERMINISTIC ANALYSIS . . . . : (2)
_ R An obvious solution to the system in Eq. (2) is obtained when
A. Why not a random mutation model? l; =2 forall k=1,---, K. This surprising simple result

Proposition 1: Assume that the point mutation rate isstates that the optimal exon lengths are distributed according
randomly distributed in the genome, i.e., the occurrenc® a delta function centered at the mean va%e But, in
of mutations is independent and identically distributed imature, the exon lengths are not uniformly distributed in the
all regions of the genome. Then, the probability of errogenome (see Fig. 1). The reason this deterministic analysis
is a decreasing function of the length of introns and iails in capturing the intron-exon distribution is that the
independent of the distribution of introns in the genome. genome is not a deterministic entity but rather a continuously
The proof of Proposition 1 follows immediately from theevolving one. Therefore, a stochastic model for the exon
Binomial distribution characteristics. Hence, we see that fangths would be more appropriate to correctly describe the
binomial error model does not account for the biologicajenome’s dynamic nature. The deterministic analysis does,
exon (or intron) length distribution inside the genome. Imowever, capture some characteristics of the biological data
other words, the biological intron-exon distribution wouldin the following sense:
be equivalent, from an error robustness criterion, to the Proposition 3: Let 6 be the delta function centered at
distribution which groups all exons in the beginning of theM gy everyp > 0, gonsider the measuré, between a

gene and all introqs atits end. Thgrefore, we need to considgintinuous unimodal probability density functigi ands .
a different mutation model, which can account for tWiven by K

observed intron-exon structure in eukaryotic genomes. We u Y

propose a Poisson mutation model. This choice is justified dp(é%,fx) =1-Pr(Xe [? —h +o). (3

by numerous arguments. First, the Poisson distribution is the

limiting distribution of the binomial when the probability of Let zo be the mode offx. Then, argmip d, = 4%. That is
error is small and the genome size is large such that titee mode offx, which minimizes the measug,, is equal
rate of point mutation in a unit interval is held constanto 4-.

(De Moivre-Laplace theorem). Second, many rare randorhhe biological exon distribution is asymmetric given that
phenomena in nature follow a Poisson distribution, e.g., thits support is[0, co]. The mode of asymmetric distributions
number of winning tickets in a large lottery, the number ofs always less or equal than their mean. From proposition
printing errors in a book, etc. In the remainder of this pape8, the distribution, which best approximatés; in the



d, measure sense, would have its mode very close to itsAt this point, it is interesting to ask ourselves: “How can
mean. Amazingly, the exon length distribution of the humamMNature generate such a distribution? Is there a simple enough
genome has its mode almost equal to its mean obtainedrabdel for exon generation, which leads to the distribution
about 170 nucleotides (see Fig. 1)! p*?” The answer is investigated in the next subsection.
Even though the deterministic analysis gave some insights
on the optimality of the biological exon length distribution™" A Random Walk model
from an error minimization criterion, a stochastic model for Insertion and deletion of exon nucleotides have been con-
the exon distribution is needed to capture the dynamics §ifmed biologically for many primitive organisms. If, during

the evolving genome. evolution, exons were formed by insertion and deletion
mechanisms, their lengths would follow some kind of a

[Il. GENOMIC STRUCTURE STOCHASTIC ANALYSIS random walk. The length of the exon at any time corresponds
A. Error Robustness Analysis to the position of the random walk. We assume that the

hi b . " h bability of sub-exons are formed independently by a stochastic process
In this subsection, we readdress the probability o €Mccording to a distributiory ({). So, the length of the final

optimization problem formulated in Section Il assuming 3yon after N steps, Xy, is the sum of N independent
stochastic distribution of the exon lengths. The fOHOWingdisplacements distr’ibute’d according fdl), i.e., Xn —

p;oposmon estgbhshe;; ';he_tnew expres|5|ontg]or_%]iprobab|ll fil [;. Given the heavy tail characteristic of the biological
of error assuming an infinite genome fengtn, 1€.5= 0. exon length distribution, we assume that the sub-exons are
Proposition 4: Let p(l) be the continuous distribution of

. generated by a distribution of the form:
the length of exons. Assume that there dfeexons in a

genome infinitely long. The mutations are assumed to be fO)y=al=@t 1>1, (7)
Poisson with parametex. Then the probability of error is . -
given by P P y where 0 < a < 2. We want to determine the limiting

0o distribution of Xy as N — oo or as the timet —
Pe=1- (/ e Mp(l) di*. (4) . By the Generalized Central Limit Theorem [9], the
We want to determine the optimal exon length distributiondensity of X tends towards an alpha-stable distribution
p*(1), which minimizes the probability of error subject toP(lle 5,0,¢), where—1 < 5 < 1 is the skewness parameter,
=°p*(l) di = 1. It can be easily shown that the delta” > 0 is the scale and € R is the location. Alpha-
function centered dt, &, satisfies this optimization problem. Stable distributions do not have a closed form expression
This solution is somehow intuitive: no exons implies no erin general. They are defined by their characteristic func-
ror! In order to get a meaningful solution to this optimizationion. Some of their prominent properties are: heavy tail,
problem, we need to impose more constraints on the exgfewness of the distribution (whefi # 0), and smooth
length distribution. For instance, the mean exon length shouttimodal density. Their asymptotic behavior is described
be larger than a pre-specified numhgor, in general, thet®  bY: limjg o p(zla, 8,0,8) = I%% where C' is some
moment ofp(!) should be larger thah,. Consequently, the constant [9]. Hence, from Eq. (6), we see that the optimal

stochastic optimization problem is reformulated as followsdistribution p* is asymptotically equivalent to an alpha-
stable distribution. Nature would prefer to generate a simple

() = argmax/oo e Mp(l) dl, subject to random walk rather than solve the Euler-Lagrange equation!

7o IV. EXPERIMENTAL RESULTS

oo The data files used were obtained from the NCBI web site:
1)/ p(l) dl =1; “ftp://ftp.ncbi.nih.gov/ genomes”. In this paper, we choose to

P display the Homo Sapiens (Human), the Rattus Norvegicus
2)/ 1*ep(l) dl > Iy, for somea > 0. (5) (Rat) and the Apis Mellifera (Honey bee) exon length distri-

0 butions. We extracted 281975 exons from the Homo Sapiens
the optimization problem formulated in Eq. (5) is solvedgenome, 185769 from the Rat genome and 32753 exons from
using the Euler-Lagrange equation. We obtain: Apis Mellifera genome. Figure 1 shows the biological data,
po(1+ 1) the optimal density and the alpha-stable distribution of the

p(l) = —3 e , (6) above organisms. For alpha-stable density fitting, we used the

eyl 4 p Mathematica package for stable distributions available from

where p and v are the Lagrange multipliers, which areJ. P. Nolan’s website: “academic2.american.egjrolan”.
determined numerically. Taking the derivative pf, it is The parametera was estimated by plotting the data
easy to show that it has a unique maximum. Observe thattbe a log-log scale and estimating the slope. The 1.5-
(14 )™ moment ofp(1) is infinite; thus satisfying condition stable distributionsp(1|1.5,0.9,35,135), p(1|0.85, 35, 140)
2) in Eq. (5). This infinite moment agrees with the heavy taiand p(I|1.5,0.9,60, 190) fit the exon length distributions
characteristic of the biological exon length distribution (seef Homo Sapiens, Rat Norvegicus and Apis Mellifera, re-
Fig. 1). The parameten determines the tail decay of the spectively. The samer = 1.5 was used to display the
distribution for a given mutation rate. optimal densityp* (1) for these organisms. We experimentally
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Fig. 1. Exon length distribution: The data points represent the biological data; the red curve is the optimal density, which minimizes the probability of
error; and the blue curve is the fitted alpha-stable distribution. The graphs of the densities are truncated at exon lengths of 1000 nucleotides.

observed that, for each eukaryotic organism, there existsFaom Eqs (9) and (8), we obtain the desired expression of
couple @\, «) which accurately fits the optimal distribution P.. |

to the biological data. Fotv = 1.5, A = 0.024 for the three Proof: [Proof of Proposition 3] Letfx be a unimodal
considered organisms. The mutation ratean be interpreted density which reaches its mode a§. Then fx(z — o)

as the average rate of accepted mutations since the beginnirgches its mode &

of life on earth. /1}5+p
X

V. CONCLUSION To = argma u_, fx (@ —zo)da.
) . K

In this paper, we proved that the introns temper the eff(_eEY continuity of fx, |(x — o) — (2 —z)| < p — |fx(x —
vescence of the ever-changing genome, under the chemical M f S h

hvsical and envi " . afoj—fx(f—xo)|<e, or somee > 0. So, we have
physical and environmental conditions, by playing the role o
a decoy for mutations. We also maintain that introns increase | argma>{2pr(M
o

- — X
the rate of evolutionary adaptation by providing a mechanism K 0

for unequal crossover. The proposed dual role of i”tro@incefx(x—mo) reaches its mode @t we obtainz; = .
serves to provide a balance between stability and adaptability. K.
In our future work, we will investigate the intron length Proof: [Proof of Proposition 4]

distribution in eukaryotic genomes by using a stochastic

)} -zl <2pe

K
model of gene creation by means of unequal crossover. P - 1— H Pr(“0 error in exonk”)
APPENDIX k=1
K 00
Proof: [Proof of Proposition 2] Letr;, denote the start / “ ; »
- . = 1- Pr(“0 error in exonk|l hydl
position of thek™ exon in the genome. We have klill 0 ( 7)p(0)

K K oo 00
. _ _ K
P.=1-]] Pr (“0 error in exonk”), (8) = 1-]] / e ANp(l)dl=1- (/ e Mp(l) dl)”.
k=1 k=170 0
|
where Pr (“0 error in exonk”)
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